27. Motion Model Probability II
pseudo_position (x) | pre-pseudo_position | delta position | P(transition) | bel(x_{t-1}) " style="text-align:center;"> | P(position) |
---|---|---|---|---|---|
7 | 1 | 6 | 1.49E-06 | 5.56E-02 | 8.27E-08 |
7 | 2 | 5 | 1.34E-04 | 5.56E-02 | 7.44E-06 |
7 | 3 | 4 | 4.43E-03 | 5.56E-02 | 2.46E-04 |
7 | 4 | ? | 5.40E-02 | 0.00E+00 | 0.00E+00 |
7 | 5 | 2 | ? | 0.00E+00 | 0.00E+00 |
7 | 6 | 1 | 3.99E-01 | 0.00E+00 | 0.00E+00 |
7 | 7 | 0 | 2.42E-01 | ? | 1.66E-03 |
7 | 8 | -1 | 5.40E-02 | 1.79E-03 | ? |
Delta Position
QUESTION:
What is difference in position for an x of 7 and a pre-pseudo position of 4?
SOLUTION:
NOTE: The solutions are expressed in RegEx pattern. Udacity uses these patterns to check the given answer
Transition Probability
QUESTION:
Use
normpdf
(bottom of page) to determine the transition probability for x = 7 and a pre-pseudo_position of 5, and a control parameter of 1, and a standard deviation of 1. The transition probability can be determined through
normpdf(delta_position, control_parameter, position_stdev)
. The answer must be in scientific notation with two decimal place accuracy, for example 3.14E-15.
SOLUTION:
NOTE: The solutions are expressed in RegEx pattern. Udacity uses these patterns to check the given answer
Determine the belief state
QUESTION:
In practice we only set our initial belief state, but making the following calculation is helpful in building intuition. What is the belief state for the penultimate row of our table above? Write the answer in scientific notation with an accuracy of two decimal places, for example 3.14E-15.
SOLUTION:
NOTE: The solutions are expressed in RegEx pattern. Udacity uses these patterns to check the given answer
Position Probability
QUESTION:
What is the discretized position probability for x = 7 and a pre-pseudo_position of 8, given the belief state in the table above? Write the answer in scientific notation with an accuracy of two decimal places, for example 3.14E-15.
SOLUTION:
NOTE: The solutions are expressed in RegEx pattern. Udacity uses these patterns to check the given answer
We have completed our table of discretized calculation for each th positon probability value. To determine the final probability returned by the motion model, we must sum the probabilities.
Aggregating Discretized P(position)
QUESTION:
Given the table above, what is the final probability returned by our motion model. Enter the answer in scientific notation with an accuracy of two decimal places, for example 3.14E-15.
SOLUTION:
NOTE: The solutions are expressed in RegEx pattern. Udacity uses these patterns to check the given answer
Recall that the transition probability can be determined through
norm_pdf(delta_position, control_parameter, position_stdev)
Start Quiz:
#include <iostream>
#include "help_functions.h"
// TODO: assign a value, the difference in distances between x_t and x_{t-1}
// for an x of 7 and a pre-pseudo position of 5
float value = ?; // YOUR VALUE HERE
float parameter = 1.0; // set as control parameter or observation measurement
float stdev = 1.0; // position or observation standard deviation
int main() {
float prob = Helpers::normpdf(value, parameter, stdev);
std::cout << prob << std::endl;
return 0;
}
#ifndef HELP_FUNCTIONS_H
#define HELP_FUNCTIONS_H
#include <math.h>
class Helpers {
public:
// definition of one over square root of 2*pi:
constexpr static float STATIC_ONE_OVER_SQRT_2PI = 1/sqrt(2*M_PI);
/**
* normpdf(X,mu,sigma) computes the probability function at values x using the
* normal distribution with mean mu and standard deviation std. x, mu and
* sigma must be scalar! The parameter std must be positive.
* The normal pdf is y=f(x,mu,std)= 1/(std*sqrt(2pi)) e[ -(x−mu)^2 / 2*std^2 ]
*/
static float normpdf(float x, float mu, float std) {
return (STATIC_ONE_OVER_SQRT_2PI/std)*exp(-0.5*pow((x-mu)/std,2));
}
};
#endif // HELP_FUNCTIONS_H
In the next concept we will implement the motion model in C++.
Reference Equations
- Discretized Motion Model:
- Transition Model:
- ' i ' th Motion Model Probability: